

HASAN KALYONCU UNIVERSITY

Faculty of Engineering Course Description Form

COURSE: Technology and R&D Management					
CODE: FE102	SEMESTER	SEMESTER: SPRING			
LANGUAGE: ENGLISH	TYPE: COM	TYPE: COMPULSORY			
PRE-REQUISITES: -	THEORY	PRACTICAL	CREDIT	ECTS	
CO-REQUISITES: -					
WEEKLY HOURS:	2	0	2	2	

CONTENT OF THE COURSE:

Definition and importance of innovation, types of innovation, innovation strategies, new product development.

Definition and importance of entrepreneurship, types of entrepreneurship, entrepreneurship strategies, business models, entrepreneurship, product portfolio management.

What is the project and definition of modern project management.

Estimate project time and cost, cpm method.

To have general information about environmental law, to have information about patent and intellectual property rights.

Product recovery options: Recycling, repair, renovation, reproduction.

OBJECTIVE OF THE COURSE:

To increase students' interest in new technologies and innovation and to ensure continuity.

Researching and sharing the developments in the world and in our country in the field of new and advanced technologies.

To make students think in an innovative, creative, systematic and project logic.

In order to increase the number of organizations producing new technologies and benefiting from the technology, the responsibilities of the individual and the organization are to be given to young people starting from their student years.

To increase the level of knowledge and consciousness so that students can think about innovation and technology and to implement their new ideas in the logic of the project.

WEEKLY SCHEDULE				
Week	Topics			
1	What is Innovation?			
2	Types of Innovation			
3	Selected Topics			
4	What is R&D?			
5	Strategic Aspects of R&D Management			
6	Selected Topics			
7	Project Planning			
8	Midterm			
9	Budgeting			
10	Selected Topics			
11	Sustainability and Product Improvement			
12	Patent and Intellectual Property Law			
13	Selected Topics			
14	Selected Topics			

TEXTBOOK: "Innovation, Research and Development Management", Patrick Gilbert, Natalia Bobadilla, Lise Gastaldi, Martine Le Boulaire, Olga Lelebina. "R&D Management", Akhilesh, K B.

REFERENCE BOOKS:

EVALUATION SYSTEM:					
IN-TERM STUDIES	QUANTITY	PERCENTAGE (%)			
Midterm Exam	1	30			
Homework	1	30			
Laboratory works					
Quiz					
Final Exam	1	40			
TOTAL	3	100			
CONTRIBUTION OF	2	60			
INTERM STUDIES TO					
OVERALL GRADE					
CONTRIBUTION OF FINAL	1	40			
EXAMINATION TO					
OVERALL GRADE					
TOTAL	3	100			

COURSE CATEGORY:	PERCENTAGE (%)
Mathematics and Basic Sciences	
Engineering	40
Engineering Design	
Social Sciences	40

[&]quot;Design for Sustainability: A Practical Approach", Tracy Bhamra, Vicky Lofthouse.

TABLE OF ECTS / WORKLOAD:					
Activities	QUANTITY	Duration (Hour)	Total Workload		
Course Duration	13	2	26		
Hours for off-the-classroom study (Pre-study, practice)	14	1	14		
Laboratory works					
Mid-term	1	2	2		
Final examination	1	2	2		
Homework	1	5	5		
Quiz					
Total Work Load			49		
Total Work Load / 30			1,63		
ECTS Credit of the Course			2		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
LO1	0	0	0	0	0	0	3	3	0	0	0
LO2	0	0	0	0	0	0	3	3	0	0	0
LO3	0	0	0	0	0	0	2	3	0	0	0
LO4	0	0	0	0	0	0	2	3	0	0	0
LO5	0	0	0	0	0	0	3	3	0	0	0
	PO: Program Outcomes LO: Learning Outcomes										
	Values	: 0: None	1: Low	2: Med	ium 3: 1	High					

INSTRUCTOR(S):	Lec. Mustafa Bıçakçı
FORM PREPARATION DATE:	22.05.2019

LEARNING OUTCOMES OF THE COURSE:	PROGRAM OUTCOMES:
LEARNING OUTCOMES OF THE COURSE:	PO1: Adequate knowledge in mathematics, science
LO1: Awareness about innovation and innovative	and engineering subjects pertaining to the relevant
strategies.	discipline; ability to use theoretical and applied
	knowledge in these areas in complex engineering
LO2: Awareness that creativity management and	problems.
innovation can lead to entrepreneurship.	PO2: Ability to identify, formulate, and solve
1 1	complex engineering problems; ability to select and
LO3: Ability to schedule by using project	apply proper analysis and modeling methods for this
identification, cost estimation and critical path	purpose.
method.	PO3: Ability to design a complex system, process,
	device or product under realistic constraints and
LO4: National and international environmental law	conditions, in such a way as to meet the desired result;
and patent and intellectual property law.	ability to apply modern design methods for this
	purpose.
LO5: Awareness about the importance of	PO4: Ability to devise, select, and use modern
sustainability issues, product recovery and product	techniques and tools needed for analyzing and solving
improvement options.	complex problems encountered in engineering
	practice; ability to employ information technologies
	effectively.
	PO5: Ability to design and conduct experiments,
	gather data, analyze and interpret results for

investigating complex engineering problems or discipline specific research questions.

PO6: Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.

PO7: Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.

PO8: Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.

PO9: Consciousness to behave according to ethical principles and professional and ethical responsibility; knowledge on standards used in engineering practice. PO10: Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.

PO11: Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.