

HASAN KALYONCU UNIVERSITY Faculty of Engineering Course Description Form

COURSE: Signals and Systems					
CODE: EE331	SEMESTER: FALL				
LANGUAGE: ENGLISH	TYPE: COMPULSORY				
PRE-REQUISITES: MATH251,	THEORY	PRACTICAL	CREDIT	ECTS	
MATH252					
CO-REQUISITES:					
WEEKLY HOURS:	3	0	3	4	

CONTENT OF THE COURSE:

Classification of signals, basic signals, classification and properties of systems, time domain characterization of Linear Time Invariant (LTI) systems, Continuous-Time and Discrete-Time Fourier Transforms, frequency domain characterization of Linear Time Invariant (LTI) systems, Sampling. Laplace and z-transforms and their applications.

OBJECTIVE OF THE COURSE:

- 1. To provide information on the classification of continuous-time and discrete-time signals and systems,
- 2. To provide information on the analysis of continuous-time and discrete-time linear systems.

WEEKLY SCHEDULE				
Week	Topics			
1	Continuous- and Discrete-Time Signals; Signal Energy and Power; Time Shift,			
	Reflection, Time Scaling; Even and Odd Signals; Unit Impulse and Unit Step;			
2	Continuous- and Discrete-Time Systems; Interconnections of Systems; Systems and			
	Memory; Invertibility, Causality, (BIBO) Stability, Time Invariance, Linearity			
3	Real Exponential Signals; Differences between Continuous- and Discrete-Time cases;			
	Complex Exponential Signals; Definitions and Units: (Fundamental) Period and			
	Frequency, in Discrete- and Continuous-Time; (Time) Periodicity in Continuous-Time			
	Signals; (Time and Frequency) Periodicity in Discrete-Time Signals;			
4	Linear Time-Invariant Systems: convultion, properties of LTI systems, Unit impuls,			
	systems described by differential and difference equations, and block diagrams.			
5	Continuous-Time Fourier Series and LTI Systems; Frequency Response of			
5				
	ContinuousTime LTI Systems; LTI Systems described by Constant Coefficient			
	Differential Equations; RC Filters; Continuous-Time Highpass, Lowpass etc Filters			
6	Discrete-Time Fourier Series and LTI Systems; Frequency Response of Discrete-Time			
	LTI Systems; LTI Systems described by Constant Coefficient Difference Equations;			
	Recursive and Nonrecursive Filters; Discrete-Time Highpass, Lowpass etc Filters;			
7	Midterm I			
8	Continuous-Time Fourier Transform and LTI Systems described by Constant Coefficient			

	Differential Equations;
9	Discrete-Time Fourier Transform and LTI Systems described by Constant Coefficient
	Difference Equations;
10	Magnitude-Phase Representation, Magnitude-Phase Representation of the Fourier
	Transform vs. Bode Plots; Ideal vs. Nonideal Filters;
	First- and Second-Order Continuous- and Discrete-Time System: Unit impulse
	Response; Unit Step Response; Frequency Response and Bode Plots;
11	Representation of Continuous (and discrete)-Time Signals by its Samples; Sampling
	Theorem; ImpulseTrain Sampling of Continuous-Time Signals; Zero-Order Hold;
	Interpolation and Reconstruction of Signals from its Samples;
12	Introduction to the Laplace Transform
13	Introduction to the z-Transform
14	Block Diagram Representation using the z-Transforms; and filter design.

TEXTBOOK: Signals and systems, Alan V. Oppenheim, Alan S. Willsky, Syed H. Nawab, Englewood (Textbook) Cliffs, N.J. Prentice-Hall, 2nd edition, 2014. **REFERENCE BOOKS:** Simon Haykin, Barry van Veen, Signals and Systems, John Wiley and Sons, 2002.

EVALUATION SYSTEM:					
IN-TERM STUDIES	QUANTITY	PERCENTAGE (%)			
Midterm Exam	2	30			
Homework	3	15			
Laboratory works					
Quiz	3	5			
Final Exam	1	50			
TOTAL	9	100			
CONTRIBUTION OF	8	50			
INTERM STUDIES TO					
OVERALL GRADE					
CONTRIBUTION OF FINAL	1	50			
EXAMINATION TO					
OVERALL GRADE					
TOTAL	9	100			

COURSE CATEGORY:	PERCENTAGE (%)
Mathematics and Basic Sciences	50
Engineering	30
Engineering Design	20
Social Sciences	0

TABLE OF ECTS / WORKLOAD:			
Activities	QUANTITY	Duration (Hour)	Total Workload
Course Duration	13	3	39
Hours for off-the-classroom study (Pre-study, practice)	14	4	56
Laboratory works			
Mid-term	2	2	4
Final examination	1	2	2
Homework	3	3	9
Quiz	3	1	3
Total Work Load			115
Total Work Load / 30			3.83
ECTS Credit of the Course			4

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
L01	3	3	3	3	1	1	1	1	0	1	0
LO2	3	3	3	2	1	1	2	3	2	0	2
LO3	3	3	3	3	2	3	2	3	2	1	1
LO4	3	3	3	3	2	2	1	1	1	1	1
	PO: Program Outcomes LO: Learning Outcomes										
	Values: 0: None 1: Low 2: Medium 3: High										

INSTRUCTOR(S):	Asst. Prof. Dr. Abdul Hafiz		
	ABDULHAFIZ		
FORM PREPARATION DATE:	22/05/2019		

LEARNING OUTCOMES OF THE COURSE:	PROGRAM OUTCOMES:
 LO1: Classify continuous-time signals and systems, LO2: Analyze continuous-time and discrete-time signals and systems in time-domain, LO3: Analyze continuous-time and discrete-time signals and systems in frequency-domain, LO4: Analyze continuous-time and discrete-time signals and systems in transform-domain. 	 PO1: Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in complex engineering problems. PO2: Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
	 PO3: Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. PO4: Ability to devise, select, and use modern techniques and tools needed for analyzing and solving

complex problems encountered in engineering
practice; ability to employ information technologies
effectively.
PO5: Ability to design and conduct experiments,
gather data, analyze and interpret results for
investigating complex engineering problems or
discipline specific research questions.
PO6: Ability to work efficiently in intra-disciplinary
and multi-disciplinary teams; ability to work
individually.
PO7: Ability to communicate effectively in Turkish,
both orally and in writing; knowledge of a minimum
of one foreign language; ability to write effective
reports and comprehend written reports, prepare
design and production reports, make effective
presentations, and give and receive clear and
intelligible instructions.
PO8: Recognition of the need for lifelong learning;
ability to access information, to follow developments
in science and technology, and to continue to educate
him/herself.
PO9: Consciousness to behave according to ethical
principles and professional and ethical responsibility;
knowledge on standards used in engineering practice.
PO10: Knowledge about business life practices such
as project management, risk management, and change
management; awareness in entrepreneurship,
innovation; knowledge about sustainable
development.
PO11: Knowledge about the global and social effects
of engineering practices on health, environment, and
safety, and contemporary issues of the century
reflected into the field of engineering; awareness of
the legal consequences of engineering solutions.
The regar consequences of engineering solutions.