

HASAN KALYONCU UNIVERSITY Faculty of Engineering Course Description Form

COURSE: Numerical Analysis					
CODE: CENG462 SEMESTER: FALL OR SPRING					
LANGUAGE: ENGLISH	TYPE: ELECTIVE				
PRE-REQUISITES: MATH 151,	THEORY PRACTICAL CREDIT ECTS				
MATH 152, MATH 251, MATH					
252					
CO-REQUISITES:					
WEEKLY HOURS:	3	0	3	5	

CONTENT OF THE COURSE:

In this course, students will be introduced to the concepts of mathematical procedures and the importance of the algorithm on the numerical calculations. Subunits of the algorithms. Matrix and matrix calculations. Solution methods of the linear equations systems. Solution methods of the nonlinear equations systems. Curve fitting methods, interpolation methods and extrapolation methods. Numerical methods of derivation. Numerical methods of integration. Numerical methods of differentiation equations. Complex numbers.

OBJECTIVE OF THE COURSE:

Aim of this course is to teach numeric solutions methods and algorithms to solve engineering problems by using computer.

WEEKLY SCHEDULE		
Week	Topics	
1	Introduction to numerical analysis, Error Analysis	
2	Numerical method for nonlinear equations: Bisection Method, Newton-Raphson	
	Method	
3	Numerical method for nonlinear equations: Secant Method	
4	Numerical Differentiation of Continuous Functions (FDD,BDD,CDD)	
5	Numerical Differentiation of Continuous Functions (Higher Order Derivative,	
	Accuracy of Divided Difference	
6	Numerical method for Simultaneous linear equations using Naïve Gauss	
	elimination	
7	Numerical method for Simultaneous linear equations using LU Decomposition	
8	Mid Examination Week	
9	Interpolation: Divided difference method, Direct Method	
10	Interpolation: Lagrange interpolation	
11	Numerical integration: Trapezoidal Rule	
12	Numerical integration: Simpson's 1/3rd Rule	
13	Numerical Methods for Ordinary Differential Equations: Euler's Method	
14	Numerical Methods for Ordinary Differential Equations: Runge-Kutta 2nd	

TEXTBOOK:

Autar K Kaw, "Numerical Methods with Applications", 2nd Edition, 2011.

REFERENCE BOOKS:

- C. F. Gerald and P.O. Wheatley, Applied Numerical Analysis, Addison-Wesley, 2004.
- A. Neumaier, Introduction to Numerical Analysis, Cambridge University Press, 2001.
- Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, 2008

EVALUATION SYSTEM:					
IN-TERM STUDIES	QUANTITY	PERCENTAGE (%)			
Midterm Exam	1	20%			
Homework	3	30%			
Laboratory works	-	-			
Quiz	2	10%			
Final Exam	1	40%			
TOTAL	7	100%			
CONTRIBUTION OF					
INTERM STUDIES TO	6	60%			
OVERALL GRADE					
CONTRIBUTION OF FINAL					
EXAMINATION TO	1	40%			
OVERALL GRADE					
TOTAL	7	100%			

COURSE CATEGORY:	PERCENTAGE (%)
Mathematics and Basic Sciences	70%
Engineering	30%
Engineering Design	0%
Social Sciences	0%

TABLE OF ECTS / WORKLOAD:					
Activities	QUANTITY	Duration (Hour)	Total Workload		
Course Duration	13	3	39		
Hours for off-the-classroom study (Pre- study, practice)	14	6	84		
Laboratory works	-	-			
Mid-term	1	2	2		
Final examination	1	2	2		
Homework	3	3	9		
Quiz	2	0.5	1		
Total Work Load			137		
Total Work Load / 30			4,57		
ECTS Credit of the Course			5		

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO
--

										0	1
L01	3	3	2	1	1	0	1	1	2	2	2
LO2	3	3	3	2	2	1	1	2	1	2	1
LO3	3	3	2	2	2	1	1	1	1	2	1
LO4	3	3	2	2	2	1	0	2	2	2	1
LO5	3	3	2	2	2	1	1	2	1	2	1
PO: Program Outcomes LO: Learning Outcomes											
Values: 0: None 1: Low 2: Medium 3: High											

INSTRUCTOR(S):	Asst. Prof. Dr. Mohammed Madi
FORM PREPARATION DATE:	22.05.2019

LEARNING OUTCOMES OF THE	PROGRAM OUTCOMES:
COURSE:	I KOGRAWI OU I COWIES.
LEARNING OUTCOMES OF THE COURSE:	PO1: Adequate knowledge in mathematics, science
	and engineering subjects pertaining to the relevant
LO1: Describe the need for numerical methods in	discipline; ability to use theoretical and applied
solving intractable problems in the field of	knowledge in these areas in complex engineering
computer engineering.	problems.
LO2: Demonstrate understanding of common	PO2: Ability to identify, formulate, and solve
numerical methods and how they are used to	complex engineering problems; ability to select and
obtain approximate solutions to mathematical problems.	apply proper analysis and modeling methods for this purpose.
LO3: Apply numerical methods to obtain	PO3: Ability to design a complex system, process,
approximate solutions to mathematical problems.	device or product under realistic constraints and
LO4: Analyse and evaluate the accuracy of	conditions, in such a way as to meet the desired result;
common numerical methods.	ability to apply modern design methods for this
LO5: Derive numerical methods for various	purpose.
mathematical operations and tasks.	PO4: Ability to devise, select, and use modern
	techniques and tools needed for analyzing and solving
	complex problems encountered in engineering
	practice; ability to employ information technologies
	effectively.
	PO5: Ability to design and conduct experiments,
	gather data, analyze and interpret results for investigating complex engineering problems or
	discipline specific research questions.
	PO6: Ability to work efficiently in intra-disciplinary
	and multi-disciplinary teams; ability to work
	individually.
	PO7: Ability to communicate effectively in Turkish,
	both orally and in writing; knowledge of a minimum
	of one foreign language; ability to write effective
	reports and comprehend written reports, prepare
	design and production reports, make effective
	presentations, and give and receive clear and
	intelligible instructions.
	PO8: Recognition of the need for lifelong learning;
	ability to access information, to follow developments
	in science and technology, and to continue to educate
	him/herself.
	PO9: Consciousness to behave according to ethical
	principles and professional and ethical responsibility;
	knowledge on standards used in engineering practice.
	PO10: Knowledge about business life practices such
	as project management, risk management, and change
	management; awareness in entrepreneurship,

innovation; knowledge about sustainable
development.
PO11: Knowledge about the global and social effects
of engineering practices on health, environment, and
safety, and contemporary issues of the century
reflected into the field of engineering; awareness of
the legal consequences of engineering solutions.