

HASAN KALYONCU UNIVERSITY Faculty of Engineering Course Description Form

COURSE: Computer Graphics				
CODE: CENG430	SEMESTER	: FALL OR SPRIN	١G	
LANGUAGE: ENGLISH	TYPE: ELECTIVE			
PRE-REQUISITES: -	THEORY	PRACTICAL	CREDIT	ECTS
CO-REQUISITES: -				
WEEKLY HOURS:	3	0	3	5

CONTENT OF THE COURSE:

Hardware and software components of graphics systems. Output and filled-data primitives. Fourier analysis, convolution, sampling, quantization, aliasing. 2D and 3D geometric transformations. Twodimensional viewing. Three-dimensional viewing: Viewing pipeline, viewing parameters, projections, viewing transformations, clipping. Visible surface detection. Introduction to illumination models and surface rendering.

OBJECTIVE OF THE COURSE:

This course introduces the basic concepts of computer graphics and raster based methods. It also provides the necessary theoretical background for introductory computer graphics and demonstrates the application of computer science to graphics. It also offers an opportunity for students to formulate and implement applications of computer graphics. This course further allows students to develop programming skills in computer graphics by programming assignments.

WEEKLY	Y SCHEDULE
Week	Topics
1	Introduction, images, displays, human vision, and color
2	Geometry in Ray Tracing
3	Shading in Ray Tracing
4	Data Structures for Graphics
5	Modeling Transformations
6	Viewing Transformations
7	Forward Rendering Pipeline (overview, culling, clipping)
8	Forward Rendering Pipeline (rasterization, texture mapping, hidden surface removal)
9	Introduction to GPUs, OpenGL and Unity 3D
10	Vertex and Fragment Shaders
11	Buffers and Textures
12	Curves and Surfaces
13	Animation
14	Review

TEXTBOOK: Peter Shirley and Steve Marschner, "Fundamentals of Computer Graphics", 3rd Edition, A K Peters, 2009, ISBN 978-1568814698.

REFERENCE BOOKS: Donald D. Hearn and M. Pauline Baker, "Computer Graphics with OpenGL", 3rd Edition, Prentice Hall, 2004, ISBN 978-0130153906.

Hughes, J. F., Van Dam, A., Foley, J. D., & Feiner, S. K. (199). *Computer graphics: principles and practice*. 2nd ed. Addison Wesley.

EVALUATION SYSTEM:		
IN-TERM STUDIES	QUANTITY	PERCENTAGE (%)
Midterm Exam	1	20
Homework	5	20
Laboratory works	13	20
Quiz	0	0
Final Exam	1	40
TOTAL	20	100
CONTRIBUTION OF	19	60
INTERM STUDIES TO		
OVERALL GRADE		
CONTRIBUTION OF FINAL	1	40
EXAMINATION TO		
OVERALL GRADE		
TOTAL	20	100

COURSE CATEGORY:	PERCENTAGE (%)
Mathematics and Basic Sciences	10
Engineering	70
Engineering Design	20
Social Sciences	

TABLE OF ECTS / WORKLOAD:			
Activities	QUANTITY	Duration (Hour)	Total Workload
Course Duration	13	3	39
Hours for off-the-classroom study (Pre-study, practice)	14	6	84
Laboratory works	-	-	-
Mid-term	1	2	2
Final examination	1	2	2
Homework	5	3	15
Quiz	0	0	0
Total Work Load			142
Total Work Load / 30			4,73
ECTS Credit of the Course			5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
L01	3	1	0	1	0	0	0	0	0	0	0
LO2	2	2	0	2	0	0	0	0	0	0	0
LO3	2	3	0	3	0	0	0	0	0	0	0
LO4	2	3	0	3	0	0	0	0	0	0	0
LO5	2	3	0	3	0	0	0	0	0	0	0

LO6	2	3	0	3	0	0	0	0	0	0	0
LO7	2	3	0	3	0	0	0	0	0	0	0
LO8	2	3	0	3	0	0	0	0	0	0	0
LO9	2	3	0	3	0	0	0	0	0	0	0
LO10	2	3	0	3	0	0	0	0	0	0	0
L011	2	3	0	3	0	0	0	0	0	0	0
PO: Program Outcomes LO: Learning Outcomes											
Values: 0: None 1: Low 2: Medium 3: High											

INSTRUCTOR(S):	Prof. Dr. Veysi İŞLER
FORM PREPARATION DATE:	23.05.2019

LEARNING OUTCOMES OF THE COURSE:	PROGRAM OUTCOMES:
LO1: Understand basic properties of images and display devices.	PO1: Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied
LO2: Understand the steps involved in generating a 2D image of a 3D virtual scene.	knowledge in these areas in complex engineering problems.PO2: Ability to identify, formulate, and solve
LO3: Understand and implement the ray tracing algorithm.	complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose. PO3: Ability to design a complex system, process,
LO4: Understand and implement the mathematical modeling of curves and surfaces.	device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this
LO5: Apply composite modeling, viewing, projection, and viewport transformations.	purpose. PO4: Ability to devise, select, and use modern techniques and tools needed for analyzing and solving
LO6: Apply 2D texture images to 3D models.	complex problems encountered in engineering practice; ability to employ information technologies effectively.
LO7: Understand and implement basic lighting and surface shading models.	PO5: Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or
LO8: Understand the basics of the programmable forward rendering pipeline.	discipline specific research questions. PO6: Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work
LO9: Understand and implement hidden surface removal and shadowing algorithms.	individually. PO7: Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum
LO10: Design computer graphics programs using OpenGL and Unity 3D.LO11: Understand the basics of computer animation.	of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
	PO8: Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.
	PO9: Consciousness to behave according to ethical principles and professional and ethical responsibility; knowledge on standards used in engineering practice. PO10: Knowledge about business life practices such

as project management, risk management, and change
management; awareness in entrepreneurship,
innovation; knowledge about sustainable
development.
PO11: Knowledge about the global and social effects
of engineering practices on health, environment, and
safety, and contemporary issues of the century
reflected into the field of engineering; awareness of
the legal consequences of engineering solutions.