

HASAN KALYONCU UNIVERSITY Faculty of Engineering Course Description Form

COURSE: Microprocessors					
CODE: CENG314	SEMESTER: SPRING				
LANGUAGE: ENGLISH	TYPE: COMPULSORY				
PRE-REQUISITES: -	THEORY	PRACTICAL	CREDIT	ECTS	
CO-REQUISITES: -					
WEEKLY HOURS:	3	2	4	6	

CONTENT OF THE COURSE:

Topics will include microprocessor architecture and structure, with an overview of 8- 16- and 32-bit systems, assembly language programming and the use of high-level languages. Basic input/output including parallel communications with and without handshaking and serial protocols. Hardware and software timing. Using interrupts and exceptions. Overview of single-chip microprocessors and controllers The internal structure and design of peripheral devices. Memory system design and analysis. The use and structure of development tools such as (cross) assemblers or compilers, monitor programs, simulators, etc.

OBJECTIVE OF THE COURSE:

This course introduces students to small microprocessor-based systems, with an emphasis on embedded system hardware and software design. The main objective of the course are to teach: Microprocessors and Microcomputers, Real-Mode Software Architecture of the 80386DX Microprocessors, Real-Mode Assembly Language Programming Methodology, Assembly Language Coding and Debugging, Protected-mode Software Architecture of 80386DX, Memory and I/O Interfaces of the 80386DX Microprocessors, Memory Devices, Circuits and Subsystem Design. Explain the architecture and organization of the Processors. Design Operation Modes and States using special purpose registers. Develop programs using structures like loops and subroutines. Test the application programs with interfacing boards. Formulate interrupt programs for memory systems using different interrupt methods

WEEKLY	SCHEDULE
Week	Topics
1	Introduction to microprocessoors and computer
2	Microprocessor arhitecture
3	Adressing mode and instruction set
4	Program control instructions
5	Microprocesor programing
6	Microprocesor programing
7	Memory Interface
8	Midterm
9	Input output interfaces
10	Interrupt interface
11	Direct memory access
12	Bus interface and communications
13	Arithmatic coprocessor

	14	Microprocess applications and review
--	----	--------------------------------------

TEXTBOOK: M. A. Mazidi &. G. Mazidi,"The 80x86 IBM PC and Compatible Computers", Prentice Hall, 4th Ed. 2003.

REFERENCE BOOKS: Ramesh S.Goankar, "Microprocessors Arhitecture, Programming, and Applications" Merill Pub.Comp. 2nd Ed., 1989 Aditya P Mathur, "Introduction To Microprocessors" Tata McMcgraw-Hill Pub.Comp. 3rd Ed., 1989

EVALUATION SYSTEM:		
IN-TERM STUDIES	QUANTITY	PERCENTAGE (%)
Midterm Exam	1	35
Homework	0	0
Laboratory works	13	20
Quiz	0	0
Final Exam	1	45
TOTAL	15	100
CONTRIBUTION OF	14	55
INTERM STUDIES TO		
OVERALL GRADE		
CONTRIBUTION OF FINAL	1	45
EXAMINATION TO		
OVERALL GRADE		
TOTAL	15	100

COURSE CATEGORY:	PERCENTAGE (%)
Mathematics and Basic Sciences	10
Engineering	60
Engineering Design	30
Social Sciences	

TABLE OF ECTS / WORKLOAD:			
Activities	QUANTITY	Duration (Hour)	Total Workload
Course Duration	13	3	39
Hours for off-the-classroom study (Pre-study, practice)	14	7	98
Laboratory works	13	2	26
Mid-term	1	2	2
Final examination	1	2	2
Homework	0	0	0
Quiz	0	0	0
Total Work Load			167
Total Work Load / 30			5,57
ECTS Credit of the Course			6

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011
LO1	1	1	1	0	2	0	0	1	0	0	1
LO2	3	3	3	0	3	0	0	2	1	1	1
LO3	1	3	1	3	2	0	2	0	0	0	1
LO4	1	1	0	0	1	0	0	0	0	0	1
LO5 1 1 0 0 1 0 0 0 1 0 0 1							1				
PO: Program Outcome LO: Learning Outcome											
	Value: 0: No 1: Low 2: Medium 3: High										

INSTRUCTOR(S):	Asst.Prof. Dr.Ercüment Karapınar
FORM PREPARATION DATE:	23.05.2019

LEARNING OUTCOMES OF THE COURSE:	PROGRAM OUTCOMES:
 LO1 : Solve basic binary math operations. LO2 : Choose an appropriate type microprocessors for practical application. LO3 : Analyze interface organization of microprocessor's internal and external 	PO1: Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in complex engineering problems.
 LO4 : Analyze assembly language programs for microprocessor. LO5 : Examine the system designing stages and distribution between hardware and software parts 	PO2: Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
	PO3: Ability to design a complex system, process, device or product under realistic constraints and condition, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.
	PO4: Ability to devise, select, and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.
	PO5: Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
	PO6: Ability to work efficiently in intra-disciplinary and multidisciplinary teams; ability to work individually.

PO7: Ability to communicate effectively in Turkish,
both orally and in writing; knowledge of a minimum
of one foreign language; ability to write effective
reports and comprehend written reports, prepare
design and production reports, make effective
presentations, and give and receive clear and
intelligible instructions.
C C
PO8: Recognition of the need for lifelong learning;
ability to access information, to follow developments
in
secience and technology, and to continue to educate
him/herself.
PO9: Consciousness to behave according to ethical
principles and professional and ethical responsibility;
knowledge on standards used in engineering practice.
POIO: Knowledge about business life practices such
as project management, risk management, and change
management; awareness in entrepreneurship,
innovation; knowledge about sustainable
development.
PO11. Knowledge about the global and social effects
of engineering practices on health environment and
safety and contemporary issues of the century
safety, and contemporary issues of the century
the level and the field of engineering, awareness of
the legal consequences of engineering solutions.