

HASAN KALYONCU UNIVERSITY

Faculty of Engineering Course Description Form

COURSE: Artificial Intelligence					
CODE: CENG306	SEMESTER: SPRING				
LANGUAGE: ENGLISH	TYPE: COMPULSORY				
PRE-REQUISITES: -	THEORY PRACTICAL CREDIT ECTS				
CO-REQUISITES: -					
WEEKLY HOURS:	3	0	3	5	

CONTENT OF THE COURSE: AI is concerned with making computers perform tasks that are currently performed better by humans. The primary aim of this course is to provide some of the theoretical foundations of AI. As a whole it emphasizes both theoretical background and hands-on experience.

OBJECTIVE OF THE COURSE: This course aims to introduce the basic concepts of Artificial Intelligence (AI). In addition, current technologies enabling AI is discussed.

WEEKLY	WEEKLY SCHEDULE AND PRE-STUDY PAGES				
Week	Topics				
1	Introduction, a brief history of AI				
2	Contemporary applications, Turing's Test				
3	Problem solving and search strategies, uninformed search algorithms				
4	Informed search algorithms				
5	Game Playing, minimaxing				
6	Game Playing, alpha-beta pruning				
7	Midterm Exam				
8	Inferencing, backward, forward and mixed chaining methods				
9	Knowledge representation				
10	Uncertainty, probabilities and Bayes' rule				
11	Machine Learning, symbolic inductive algorithms				
12	Rule associations and decision trees				
13	Neural computing, backpropagation algorithm				
14	Final Exam				

TEXTBOOK: S. Russell, and P. Norvig. Artificial Intelligence: A Modern Approach, Second edition. Prentice-Hall, 2004.

REFERENCE BOOKS:

- M. Negnevitsky. Artificial Intelligence: A Guide to Intelligent Systems. Addison Wesley. 2001
- G.F. Luger and W.A. Stubblefield. Artificial Intelligence, 4th ed. Addison Wesley, 2002.

EVALUATION SYSTEM:						
IN-TERM STUDIES	QUANTITY	PERCENTAGE (%)				
Midterm Exam	2	20				
Homework	2	10				
Laboratory works	0	0				
Quiz	1	10				
Final Exam	1	60				
TOTAL	6	100				
CONTRIBUTION OF	5	40				
INTERM STUDIES TO						
OVERALL GRADE						
CONTRIBUTION OF FINAL	1	60				
EXAMINATION TO						
OVERALL GRADE						
TOTAL	6	100				

COURSE CATEGORY:	PERCENTAGE (%)
Mathematics and Basic Sciences	30
Engineering	30
Engineering Design	40
Social Sciences	0

TABLE OF ECTS / WORKLOAD:						
Activities	QUANTITY	Duration (Hour)	Total Workload			
Course Duration	13	3	39			
Hours for off-the-classroom study (Pre-study, practice)	14	6	84			
Laboratory works	0	0	0			
Mid-term	2	2	4			
Final examination	1	2.5	2.5			
Homework	2	8	16			
Quiz	1	2	2			
Total Work Load			147.5			
Total Work Load / 30			4,92			
ECTS Credit of the Course			5			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
LO1	3	3	0	2	2	1	0	0	0	0	0
LO2	3	3	0	2	2	1	0	0	0	0	0
LO3	3	3	0	2	2	1	0	0	0	0	0
	PO: Program Outcomes LO: Learning Outcomes										
	Values: 0: None 1: Low 2: Medium 3: High										

INSTRUCTOR(S):	Asst. Prof. Dr. Bülent HAZNEDAR
FORM PREPARATION DATE:	13.09.2019

LEARNING OUTCOMES OF THE COURSE:

LEARNING OUTCOMES OF THE COURSE:

LO1: The students will understand the basics of Artificial Intelligence as a new paradigm.

LO2: The students will be able to decide when it is appropriate to use this technology.

LO3: The students will learn when this technology should be applied to create intelligent applications.

PROGRAM OUTCOMES:

PO1: Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in complex engineering problems.

PO2: Ability to identify, formulate, and solve complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.

PO3: Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.

PO4: Ability to devise, select, and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.

PO5: Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.

PO6: Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.

PO7: Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.

PO8: Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself.

PO9: Consciousness to behave according to ethical principles and professional and ethical responsibility; knowledge on standards used in engineering practice. PO10: Knowledge about business life practices such as project management, risk management, and change management; awareness in entrepreneurship, innovation; knowledge about sustainable development.

PO11: Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.