

HASAN KALYONCU UNIVERSITY Faculty of Engineering Course Description Form

COURSE: Formal Languages and Automata					
CODE: CENG303	SEMESTER: FALL				
LANGUAGE: ENGLISH	TYPE: COMPULSORY				
PRE-REQUISITES: -	THEORY PRACTICAL CREDIT ECTS			ECTS	
CO-REQUISITES: -					
WEEKLY HOURS:	3	0	3	4	

CONTENT OF THE COURSE:

Formal proofs. Finite automata, regular expressions, and algorithms connecting the two notions. Pumping lemma for regular languages and properties of regular languages. Context-free grammars. Pumping lemma for context-free languages and properties of context-free languages. Push-down automata and Turing machines.

OBJECTIVE OF THE COURSE:

Aim of this course is to make an introduction to the formal language theory and establish a theoretical foundation for computer science. It is intended to give the students basic understanding of abstraction using formal languages and abstract machines while investigating the concept of computation.

WEEKLY SCHEDULE				
Week	Topics			
1	Formal Proofs			
2	Finite Automata			
3	Non-deterministic Automata			
4	Regular Expressions			
5	Closure Properties of Regular Languages			
6	Pumping Lemma for Regular Languages			
7	Midterm Exam			
8	Context Free Languages and Grammars			
9	Pushdown Automata			
10	Pumping Lemma for Context Free Languages			
11	Context-sensitive Languages			
12	Turing Machines			
13	Variants of Turing Machines			
14	Semester Review			

TEXTBOOK: Michael Sipser, Introduction to the Theory of Computation, 3rd edition.

REFERENCE BOOKS: J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory, Languages, and Computation, Pearson/Addison-Wesley.

EVALUATION SYSTEM:						
IN-TERM STUDIES	QUANTITY	PERCENTAGE (%)				
Midterm Exam	1	30				
Homework	0	0				
Laboratory works	0	0				
Quiz	5	30				
Final Exam	1	40				
TOTAL	7	100				
CONTRIBUTION OF	6	60				
INTERM STUDIES TO						
OVERALL GRADE						
CONTRIBUTION OF FINAL	1	40				
EXAMINATION TO						
OVERALL GRADE						
TOTAL	7	100				

COURSE CATEGORY:	PERCENTAGE (%)
Mathematics and Basic Sciences	20
Engineering	40
Engineering Design	40
Social Sciences	

TABLE OF ECTS / WORKLOAD:					
Activities	QUANTITY	Duration (Hour)	Total Workload		
Course Duration	13	3	39		
Hours for off-the-classroom study (Pre-study, practice)	14	5	70		
Laboratory works	0	0	0		
Mid-term	1	2	2		
Final examination	1	2	2		
Homework	0	0	0		
Quiz	5	0.5	2.5		
Total Work Load			115.5		
Total Work Load / 30			3.85		
ECTS Credit of the Course			4		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
L01	1	3	0	0	0	0	0	0	0	0	0
LO2	1	3	0	0	0	0	0	0	0	0	0
LO3	1	3	0	0	0	0	0	0	0	0	0
LO4	1	3	0	0	0	0	0	0	0	0	0
LO5	1	3	0	0	0	0	0	0	0	0	0
LO6	2	3	0	0	0	0	0	0	0	0	0
	Values: 0: None 1: Low 2: Medium 3: High										
	PO: Program Outcome LO: Learning Outcome										

INSTRUCTOR(S):	Asst. Prof. Dr. Ulaş GÜLEÇ
FORM PREPARATION DATE:	23.05.2019

LEARNING OUTCOMES OF THE COURSE:	PROGRAM OUTCOMES:
LO1: To understand the concept of formal	PO1: Adequate knowledge in mathematics,
languages.	science and engineering subjects pertaining to the
	relevant discipline; ability to use theoretical and
LO2: To understand the classification of	applied knowledge in these areas in complex
languages.	engineering problems.
	PO2: Ability to identify, formulate, and solve
LO3: To gain basic understanding of finite	complex engineering problems; ability to select
automata, what they can and what they cannot	for this number
uo.	PO3 : Ability to design a complex system
LO4. To gain basic understanding of nushdown	process device or product under realistic
automata, what they can and what they cannot	constraints and conditions, in such a way as to
do.	meet the desired result: ability to apply modern
	design methods for this purpose.
LO5: To gain basic understanding of the ultimate	PO4: Ability to devise, select, and use modern
computing machines – Turing Machines	techniques and tools needed for analyzing and
	solving complex problems encountered in
LO6: To understand what is computable and	engineering practice; ability to employ
what is not	information technologies effectively.
	PO5: Ability to design and conduct experiments,
	gather data, analyze and interpret results for
	investigating complex engineering problems or
	BO6: Ability to work officiently in intro
	disciplinary and multi disciplinary teams: ability
	to work individually
	PO7: Ability to communicate effectively in
	Turkish, both orally and in writing; knowledge of
	a minimum of one foreign language; ability to
	write effective reports and comprehend written
	reports, prepare design and production reports,

ma	hake effective presentations, and give and
ree	eceive clear and intelligible instructions.
PO	O8: Recognition of the need for lifelong
lea	earning; ability to access information, to follow
de	evelopments in science and technology, and to
со	ontinue to educate him/herself.
PO	O9: Consciousness to behave according to
eti	thical principles and professional and ethical
re	esponsibility; knowledge on standards used in
en	ngineering practice.
PO	O10: Knowledge about business life practices
su	ich as project management, risk management,
an	nd change management; awareness in
en	ntrepreneurship, innovation; knowledge about
su	istainable development.
PO	O11: Knowledge about the global and social
ef	ffects of engineering practices on health,
en	nvironment, and safety, and contemporary
iss	sues of the century reflected into the field of
en	ngineering; awareness of the legal consequences
of	f engineering solutions.