

HASAN KALYONCU UNIVERSITY Faculty of Engineering Course Description Form

COURSE: Software Engineering				
CODE: CENG302	SEMESTER:	SPRING		
LANGUAGE: ENGLISH	TYPE: COM	PULSORY		
PRE-REQUISITES: -	THEORY	PRACTICAL	CREDIT	ECTS
CO-REQUISITES: -				
WEEKLY HOURS:	3	0	3	4

CONTENT OF THE COURSE:

Software development methodologies. Requirement analysis, design and implementation of software systems, Coding, Unit, Integration, and System Testing. Quality Assurance and Project Management. Tools and Standards.

OBJECTIVE OF THE COURSE:

This course aims to introduce the students to the world of software engineering. Methodologies and phases of software development will be discussed. Usage of tools and standards in writing software requirements, design, coding and testing will be investigated. Project and quality management in software development will be described.

WEEKLY	WEEKLY SCHEDULE AND PRE-STUDY PAGES				
Week	Topics				
1	Introduction				
2	Lifecycle Processes				
3	Requirements Engineering				
4	System Modeling				
5	Processes (Agile)				
6	Architectural Design				
7	Overview				
8	Construction				
9	Testing				
10	Dependability				
11	Quality				
12	Overview				
13	Software Evaluation and Maintenance Process				
14	Professional and Ethical Issues				

TEXTBOOK: Ian Sommerville, Software Engineering, 7th Ed., Pearson – Addison Wesley, 2004.

REFERENCE BOOKS: Roger S. Pressman, Software Engineering – A Practitioner's Approach, 6th Ed., McGraw Hill, International Edition, 2004.

EVALUATION SYSTEM:		
IN-TERM STUDIES	QUANTITY	PERCENTAGE (%)
Midterm Exam	1	30
Homework	5	15
Laboratory works		
Quiz	1	15
Final Exam	1	40
TOTAL	8	100
CONTRIBUTION OF	7	60
INTERM STUDIES TO		
OVERALL GRADE		
CONTRIBUTION OF FINAL	1	40
EXAMINATION TO		
OVERALL GRADE		
TOTAL	8	100

COURSE CATEGORY:	PERCENTAGE (%)
Mathematics and Basic Sciences	5
Engineering	30
Engineering Design	65
Social Sciences	

TABLE OF ECTS / WORKLOAD:						
Activities	QUANTITY	Duration (Hour)	Total Workload			
Course Duration	13	3	39			
Hours for off-the-classroom study (Pre-study, practice)	14	1	14			
Laboratory works	0	0	0			
Mid-term	1	2	2			
Final examination	1	2	2			
Homework	5	4	20			
Quiz	1	30	30			
Total Work Load			107			
Total Work Load / 30			3.57			
ECTS Credit of the Course			4			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
L01	3	0	0	0	0	0	0	0	0	2	0
LO2	3	2	1	2	0	0	0	0	0	1	0
LO3	2	3	3	3	2	0	0	0	0	1	0
LO4	2	3	3	3	3	0	0	0	0	0	0
LO5	2	3	3	3	3	0	0	0	0	0	0
LO6	2	3	3	3	3	0	0	0	0	1	0
L07	2	3	3	3	3	0	0	0	0	0	0
LO8	2	3	3	3	3	0	0	0	0	0	0
LO9	3	3	3	3	3	3	3	0	0	1	0

LO10	2	3	3	3	3	0	3	0	0	1	0
L011	2	3	3	3	3	0	3	0	0	1	0
LO12	3	2	2	2	2	0	0	0	0	1	0
LO13	3	2	2	2	2	0	0	0	0	1	0
LO14	2	2	2	2	2	0	0	0	0	3	0
LO15	2	0	0	0	0	0	0	0	3	2	0
			Values:	Values: 0: None 1: Low 2: Medium 3: High							
			PO: Pro	PO: Program Outcome LO: Learning Outcome							

INSTRUCTOR(S):	Prof. Dr. Veysi İŞLER
FORM PREPARATION DATE:	23.05.2019

LEARNING OUTCOMES OF THE COURSE:	PROGRAM OUTCOMES:
LO1: Understand the domain and the basic terminology of Software Engineering.	PO1: Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and
LO2: Analyze widely used software process models.	applied knowledge in these areas in complex engineering problems. PO2: Ability to identify, formulate, and solve
LO3: Compare plan-driven and agile approaches to software development.	complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
LO4: Distinguish user requirements and system requirements.	PO3: Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to
LO5: Distinguish functional requirements and different kinds of non-functional requirements.	meet the desired result; ability to apply modern design methods for this purpose. PO4: Ability to devise, select, and use modern
LO6: Elaborate system dependability requirements, including reliability, availability, safety and security.	techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.
LO7: Compose a software requirement specification that is verifiable, correct, consistent, complete and unambiguous.	PO5: Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.
LO8: Apply UML for modeling various aspects of computer-based systems using a state-of-art tool.	PO6: Ability to work efficiently in intra- disciplinary and multi-disciplinary teams; ability to work individually.PO7: Ability to communicate effectively in Turkish, both orally and in writing; knowledge of
LO9: To take part in all processes within a software project and to present the phases and solution steps encountered in these phases.	a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and
LO10: Apply the relevant standard for software requirement specification, e.g. IEEE 830.	receive clear and intelligible instructions. PO8: Recognition of the need for lifelong learning; ability to access information, to follow
LO11: Apply the relevant standard for software design description, e.g. IEEE 1016.	developments in science and technology, and to continue to educate him/herself.

	PO9: Consciousness to behave according to
LO12: Select testing techniques appropriate for a	ethical principles and professional and ethical
given test objective.	responsibility; knowledge on standards used in
	engineering practice.
LO13: Understand the fundamental concepts of	PO10: Knowledge about business life practices
quality as related to software, such as process	such as project management, risk management,
quality and product quality, along with related	and change management; awareness in
standards.	entrepreneurship, innovation; knowledge about
	sustainable development.
LO14: Understand software metrics and their	PO11: Knowledge about the global and social
relation to product quality.	effects of engineering practices on health,
	environment, and safety, and contemporary
LO15: Identify ethical issues in a given situation,	issues of the century reflected into the field of
using the terminology of ACM/IEEE SECEPP.	engineering; awareness of the legal consequences
	of engineering solutions.