

HASAN KALYONCU UNIVERSITY

Faculty of Engineering Course Description Form

COURSE: Biology				
CODE: BIO202	SEMESTER	: SPRING		
LANGUAGE: ENGLISH	TYPE: COM	PULSORY		
PRE-REQUISITES: -	THEORY	PRACTICAL	CREDIT	ECTS
CO-REQUISITES: -				
WEEKLY HOURS:	3	0	3	4

CONTENT OF THE COURSE:

Introduction to the basic concepts of biology. Topics range from molecules to organisms. This course includes other topics such as genetics, genetic engineering, DNA technology and genomic structures. It also covers topics such as bioinformatics, synthetic biology and nanobiotechnology, where engineering is applied to biology.

OBJECTIVE OF THE COURSE:

Upon successful completion of the course, the students will be able to: understand the basic concepts of biology and how to use computers in biological studies. Critically think, analyze and evaluate scientific data and information. Understand the relationship between biology and computer. Learn bioinformatics terminology and important methods and tools used in bioinformatics. Having a general idea about synthetic biology and nanotechnology, which are important science fields for the future, can understand their applications.

WEEKLY	SCHEDULE
Week	Topics
1	Introduction: Life on Earth: What is Life? What is science?
2	Cell Life: Atoms, Molecules and Biological Molecules.
3	Cell Structure, Cell Membrane Structure and Function
4	Cellular Respiration and Photosynthesis
5	Genetics: Cellular Reproduction, Inheritance
6	Structure and Function of DNA, Gene Expression and Regulation
7	Midterm
8	Biotechnology: Genetic Engineering, DNA Technology and Genomics
9	Biotechnology: Genetic Engineering, DNA Technology and Genomics
10	Bioinformatics and Biological Databases
11	Synthetic Biology: Application of Engineering to Biology
12	Nanobiotechnology
13	Biology and Computers: Present and Future - Presentations
14	Biology and Computers: Present and Future - Presentations

TEXTBOOK: Eric J. Simon, Jean L. Dickey, Jane B. Reece, Kelly A. Hogan, Campbell Essential Biology with Physiology. Pearson, 2016. Jane B. Reece, Martha R. Taylor, Eric J. Simon, Jean L. Dickey, Kelly Hogan, Campbell Biology Concepts and Connections. Pearson, 2015.

REFERENCE BOOKS:

Dan Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, 1997. David W. Mount, Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press, 2004.

EVALUATION SYSTEM:		
IN-TERM STUDIES	QUANTITY	PERCENTAGE (%)
Midterm Exam	1	35
Homework	1	20
Laboratory works		
Quiz		
Final Exam	1	45
TOTAL	3	100
CONTRIBUTION OF	2	55
INTERM STUDIES TO		
OVERALL GRADE		
CONTRIBUTION OF FINAL	1	45
EXAMINATION TO		
OVERALL GRADE		
TOTAL	3	100

COURSE CATEGORY:	PERCENTAGE (%)
Mathematics and Basic Sciences	
Engineering	
Engineering Design	
Social Sciences	100

TABLE OF ECTS / WORKLOAD:				
Activities	QUANTITY	Duration (Hour)	Total Workload	
Course Duration	13	3	39	
Hours for off-the-classroom study (Pre-study, practice)	14	5	70	
Laboratory works				
Mid-term	1	2	2	
Final examination	1	2	2	
Homework	1	2	2	
Quiz				
Total Work Load			115	
Total Work Load / 30			3,8	
ECTS Credit of the Course			4	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
LO1	3	0	0	0	0	0	0	2	0	0	0
LO2	2	0	0	0	2	0	0	1	0	0	0
LO3	2	0	0	0	0	0	0	2	0	0	0
LO4	2	0	0	0	0	0	0	1	0	0	0
LO5	1	0	0	0	0	0	0	3	0	0	0
	PO: Pro	ogram Ou	itcomes	LO: Lea	rning Ou	tcomes					
	Values: 0: None 1: Low 2: Medium 3: High										

INSTRUCTOR(S):	Asst. Prof. Dr. Ulaş GÜLEÇ
FORM PREPARATION DATE:	22/05/2019

FORM PREPARATION DATE:	22/05/2019		
LEARNING OUTCOMES OF THE	PROGRAM OUTCOMES:		
COURSE:			
LO1: To understand the basic concepts in biology and how to use computers in biological studies.	PO1: Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied		
LO2: To be able to critically analyze, analyze and evaluate scientific data and information.	knowledge in these areas in complex engineering problems. PO2: Ability to identify, formulate, and solve		
LO3: To understand the relationship between biology and computer.	complex engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.		
LO4: To learn bioinformatics terminology and important methods and tools used in bioinformatics.	PO3: Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result:		

LO5: To have a general idea about synthetic biology and nanotechnology which are important science fields for the future and to understand its applications.

PO4: Ability to devise, select, and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice; ability to employ information technologies effectively.

ability to apply modern design methods for this

PO5: Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.

PO6: Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.

PO7: Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.

PO8: Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself

PO9: Consciousness to behave according to ethical principles and professional and ethical responsibility; knowledge on standards used in engineering practice. **PO10:** Knowledge about business life practices such

as project management, risk management, and change
management; awareness in entrepreneurship,
innovation; knowledge about sustainable
development.
PO11: Knowledge about the global and social effects
of engineering practices on health, environment, and
safety, and contemporary issues of the century
reflected into the field of engineering; awareness of
the legal consequences of engineering solutions.