

 i

TABLE OF CONTENTS
1. INTRODUCTION ... 3

1.1 Purpose and Scope .. 3

1.2 Problem Statement .. 3

1.3 Solution Statement .. 3

1.4 Contribution .. 3

1.5 Glossary .. 3

2. LITERATURE REVIEW .. 4

2.1 The Objectives of a Literature Review ... 4

3. SOFTWARE REQUIREMENTS SPECIFICATION ... 6

3.1 Introduction ... 6

3.2 The Overall Description .. 6

3.2.1 Product Perspective .. 6

3.3 Product Functions ... 10

3.4 User Characteristics ... 10

3.5 Constraints ... 11

3.6 Assumptions and Dependencies ... 11

3.7 Apportioning of Requirements. .. 11

3.8 Specific Requirements ... 12

3.8.1 Functions .. 13

3.8.2 Performance Requirements .. 14

3.8.3 Logical Database Requirements .. 14

3.8.4 Design Constraints ... 15

3.8.5 Software System Attributes ... 15

3.8.6 Organizing the Specific Requirements .. 17

4. SYSTEM DESIGN SPECIFICATION ... 19

4.1 Introduction ... 19

4.2 SYSTEM ARCHITECTURE ... 19

4.2.1 System Software Architecture ... 19

4.3 DATABASE DESIGN ... 20

 ii

4.4 HUMAN-MACHINE INTERFACE .. 21

4.4.1 Inputs ... 22

4.4.2 Outputs ... 23

4.5 DETAILED DESIGN ... 23

4.5.1 Software Detailed Design .. 24

5. IMPLEMENTATION .. 25

6. RESULT & CONCLUSION ... 26

REFERENCES .. 27

APPENDIX A .. 28

APPENDIX B .. 29

3

 1. INTRODUCTION

The introduction should contain the following information:

1.1 Purpose and Scope

This section provides a brief description of the proposed systems, and you should describe

the system in narrative form using non-technical terms.

1.2 Problem Statement

State the problem to be solved. What are the research questions? Why are you doing this

work and what significance does it have in the relevant literature? Even if your project is

applied (as opposed to research-oriented), you are building a system because a problem,

requiring a solution in the form of a computer program, exists.

1.3 Solution Statement

State your solution to the problem.

1.4 Contribution

State how your solution builds upon and extends current technology.

1.5 Glossary

Supply a glossary of all terms and abbreviations used in this document. If the glossary is

several pages in length, it may be included as an appendix.

4

2. LITERATURE REVIEW

The literature review is an extremely important component of the senior project to ensure

that students are making research a vital part of their decision making.

A literature review (also expressed as “a review of the literature”) is an overview of

previous research and the important aspect of the project topic. It identifies, describes and

analyzes both 1) related research that has already been done, and 2) the state of knowledge

about the topic.

The research process often begins with a question that the student(s) would like to answer.

In order to identify what other research has addressed this question and to find out what is

already known about it, the student will conduct a literature review. This entails

examining scholarly books and journal articles, and sometimes additional resources such as

conference proceedings and dissertations, to learn about previous research related to the

question. Students want to be able to identify what is already known about the question

and to build upon existing knowledge. Familiarity with previous research also helps

students design their own study. Once this literature review foundation is developed, a

student decides how she or he will study the subject, designs a research method or

methods, collects and analyzes the data, and reflects on what has been learned.

2.1 The Objectives of a Literature Review

Students should try to accomplish the following four important objectives in preparing a

literature review:

1. The review should provide a thorough overview of previous research on the topic.

This should be a helpful review for readers who are already familiar with the topic and

an essential background for readers who are new to the topic. The review should

provide a clear sense about how the author’s current research fits into the broader,

sociological understanding of the topic. When the reader completes reading of the

literature review, she or he should be able to say, “I now know what previous research

has learned about this topic.”

5

2. The review should contain references to important previous studies related to the

research question that are found in high quality sources such as scholarly books and

journals. A good literature review conveys to readers that the author has been

conscientious in examining previous research and that the author’s research builds on

what is already known. In this process, highly interested readers are also provided with

a set of references that they may wish to read themselves.

3. The review should be succinct and well-organized.

4. The review should follow generally established stylistic guidelines. This conveys to

readers that the author is familiar with scholarly publication style, and that can add

legitimacy to the author’s work. Plus, when the typical style is used, it is easier for

readers to immediately follow the report’s organization.

6

3. SOFTWARE REQUIREMENTS SPECIFICATION

NOTE: This section describes the SRS report in detail. You do not have to complete

all the subheading in your report, but you need to clearly explain the all requirements

of your project.

3.1 Introduction

This chapter presents the software requirements specifications.

In general, it describes:

• Requirements of functionalities, performances, interfaces, environment …

• Tests principles and definitions of validation methods of requirements,

• The compliance of requirements to customer needs,

• The relative importance and precedence of requirements

3.2 The Overall Description

Describe the general factors that affect the product and its requirements. This section does

not state specific requirements. Instead, it provides a background for those requirements,

and makes them easier to understand. In a sense, this section tells the requirements in plain

English for the consumption of the customer.

3.2.1 Product Perspective

Put the product into perspective with other related products. If the product is independent

and totally self-contained, it should be so stated here. If the SRS defines a product that is a

component of a larger system, as frequently occurs, then this subsection relates the

requirements of the larger system to functionality of the software and identifies interfaces

between that system and the software. If you are building a real system, compare its

similarity and differences to other systems in the marketplace. If you are doing a research-

oriented project, what related research compares to the system you are planning to build. A

block diagram showing the major components of the larger system, interconnections, and

external interfaces can be helpful. This is not a design or architecture picture. It is more to

provide context, especially if your system will interact with external actors. The system

you are building should be shown as a black box. Let the design document present the

internals.

7

The following subsections describe how the software operates inside various constraints.

3.2.1.1 System Interfaces

List each system interface and identify the functionality of the software to accomplish the

system requirement and the interface description to match the system. These are external

systems that you have to interact with. For instance, if you are building a business

application that interfaces with the existing employee payroll system, what is the API to

that system that designer’s will need to use?

3.2.1.2 Interfaces

Specify:

(1) The logical characteristics of each interface between the software product

and its users.

(2) All the aspects of optimizing the interface with the person who must use the

system

3.2.1.3 Hardware Interfaces

Specify the logical characteristics of each interface between the software product and the

hardware components of the system. This includes configuration characteristics. It also

covers such matters as what devices are to be supported, how they are to be supported and

protocols. This is not a description of hardware requirements in the sense that “This

program must run on a Mac with 64M of RAM”. This section is for detailing the actual

hardware devices your application will interact with and control. For instance, if you are

controlling X10 type home devices, what is the interface to those devices? Designers

should be able to look at this and know what hardware they need to worry about in the

design. Many business type applications will have no hardware interfaces.

If none, just state “The system has no hardware interface requirements” If you just delete

sections that are not applicable, then readers do not know if: a. This does not apply or b.

You forgot to include the section in the first place.

8

3.2.1.4 Software Interfaces

Specify the use of other required software products and interfaces with other application

systems. For each required software product, include:

(1) Name

(2) Mnemonic

(3) Specification number

(4) Version number

(5) Source

For each interface, provide:

(1) Discussion of the purpose of the interfacing software as related to this

software product

(2) Definition of the interface in terms of message content and format

Here we document the APIs, versions of software that we do not have to write, but that our

system has to use. For instance if your customer uses SQL Server 7 and you are required

to use that, then you need to specify i.e. Microsoft SQL Server 7. The system must use

SQL Server as its database component. Communication with the DB is through ODBC

connections. The system must provide SQL data table definitions to be provided to the

company DBA for setup.

A key point to remember is that you do NOT want to specify software here that you think

would be good to use. This is only for customer-specified systems that you have to

interact with. Choosing SQL Server 7 as a DB without a customer requirement is a Design

choice, not a requirement. This is a subtle but important point to writing good requirements

and not over-constraining the design.

3.2.1.5 Communications Interfaces

Specify the various interfaces to communications such as local network protocols, etc.

These are protocols you will need to directly interact with. If you happen to use web

services transparently to your application then do not list it here. If you are using a custom

protocol to communicate between systems, then document that protocol here so designers

know what to design. If it is a standard protocol, you can reference an existing document

or RFC.

9

3.2.1.6 Memory Constraints

Specify any applicable characteristics and limits on primary and secondary memory. Don’t

just make up something here. If all the customer’s machines have only 128K of RAM,

then your target design has got to come in under 128K so there is an actual requirement.

You could also cite market research here for shrink-wrap type applications “Focus groups

have determined that our target market has between 256-512M of RAM, therefore the

design footprint should not exceed 256M.” If there are no memory constraints, so state.

3.2.1.7 Operations

Specify the normal and special operations required by the user such as:

(1) The various modes of operations in the user organization

(2) Periods of interactive operations and periods of unattended operations

(3) Data processing support functions

(4) Backup and recovery operations

(Note: This is sometimes specified as part of the User Interfaces section.) If you separate

this from the UI stuff earlier, then cover business process type stuff that would impact the

design. For instance, if the company brings all their systems down at midnight for data

backup that might impact the design. These are all the work tasks that impact the design of

an application, but which might not be located in software.

3.2.1.8 Site Adaptation Requirements

In this section:

(1) Define the requirements for any data or initialization sequences that are

specific to a given site, mission, or operational mode

(2) Specify the site or mission-related features that should be modified to adapt

the software to a particular installation

If any modifications to the customer’s work area would be required by your system, then

document that here. For instance, “A 100Kw backup generator and 10000 BTU air

conditioning system must be installed at the user site prior to software installation”.

10

This could also be software-specific like, “New data tables created for this system must be

installed on the company’s existing DB server and populated prior to system activation.”

Any equipment the customer would need to buy or any software setup that needs to be

done so that your system will install and operate correctly should be documented here.

3.3 Product Functions

Provide a summary of the major functions that the software will perform. Sometimes the

function summary that is necessary for this part can be taken directly from the section of

the higher-level specification (if one exists) that allocates particular functions to the

software product.

For clarity:

(1) The functions should be organized in a way that makes the list of functions

understandable to the customer or to anyone else reading the document for the

first time.

(2) Textual or graphic methods can be used to show the different functions and

their relationships. Such a diagram is not intended to show a design of a

product but simply shows the logical relationships among variables.

This section describes the functionality of the system in the language of the customer.

What specifically does the system that will be designed have to do? Drawings are good,

but remember this is a description of what the system needs to do, not how you are going

to build it. (That comes in the design document).

3.4 User Characteristics

Describe those general characteristics of the intended users of the product including

educational level, experience, and technical expertise. Do not state specific requirements

but rather provide the reasons why certain specific requirements are later specified in

section 3.8.

What is it about your potential user base that will impact the design? Their experience and

comfort with technology will drive UI design. Other characteristics might actually

influence internal design of the system.

11

3.5 Constraints

Provide a general description of any other items that will limit the developer's options.

These can include:

(1) Regulatory policies

(2) Hardware limitations (for example, signal timing requirements)

(3) Interface to other applications

(4) Parallel operation

(5) Audit functions

(6) Control functions

(7) Higher-order language requirements

(8) Reliability requirements

(9) Criticality of the application

(10) Safety and security considerations

This section captures non-functional requirements in the customers language.

3.6 Assumptions and Dependencies

List each of the factors that affect the requirements stated in the SRS. These factors are not

design constraints on the software but are, rather, any changes to them that can affect the

requirements in the SRS. For example, an assumption might be that a specific operating

system would be available on the hardware designated for the software product. If, in fact,

the operating system were not available, the SRS would then have to change accordingly.

This section is catch-all for everything else that might influence the design of the system

and that did not fit in any of the categories above.

3.7 Apportioning of Requirements.

Identify requirements that may be delayed until future versions of the system. After you

look at the project plan and hours available, you may realize that you just cannot get

everything done. This section divides the requirements into different sections for

development and delivery. Remember to check with the customer – they should prioritize

the requirements and decide what does and does not get done. This can also be useful if

you are using an iterative life cycle model to specify which requirements will map to

12

which interation.

3.8 Specific Requirements

This section contains all the software requirements at a level of detail sufficient to enable

designers to design a system to satisfy those requirements, and testers to test that the

system satisfies those requirements. Throughout this section, every stated requirement

should be externally perceivable by users, operators, or other external systems. These

requirements should include at a minimum a description of every input (stimulus) into the

system, every output (response) from the system and all functions performed by the system

in response to an input or in support of an output. The following principles apply:

(1) Specific requirements should be stated with all the characteristics of a good

SRS

 correct

 unambiguous

 complete

 consistent

 ranked for importance and/or stability

 verifiable

 modifiable

 traceable

(2) Specific requirements should be cross-referenced to earlier documents that

relate

(3) All requirements should be uniquely identifiable (usually via numbering like

3.1.2.3)

(4) Careful attention should be given to organizing the requirements to

maximize readability (Several alternative organizations are given at end of

document)

Before examining specific ways of organizing the requirements it is helpful to understand

the various items that comprise requirements as described in the following subclasses.

This section reiterates section 3.2, but is for developers not the customer. The customer

buys in with section 3.2, the designers use section 3.3 to design and build the actual

application.

13

Remember this is not design. Do not require specific software packages, etc unless the

customer specifically requires them. Avoid over-constraining your design. Use proper

terminology:

The system shall… A required, must have feature

The system should… A desired feature, but may be deferred til later

The system may… An optional, nice-to-have feature that may never make it to

implementation.

Each requirement should be uniquely identified for traceability. Usually, they are

numbered 3.1, 3.1.1, 3.1.2.1 etc. Each requirement should also be testable. Avoid

imprecise statements like, “The system shall be easy to use” Well no kidding, what does

that mean? Avoid “motherhood and apple pie” type statements, “The system shall be

developed using good software engineering practice”

Avoid examples, This is a specification, a designer should be able to read this spec and

build the system without bothering the customer again. Don’t say things like, “The system

shall accept configuration information such as name and address.” The designer doesn’t

know if that is the only two data elements or if there are 200. List every piece of

information that is required so the designers can build the right UI and data tables.

3.8.1 Functions

Functional requirements define the fundamental actions that must take place in the

software in accepting and processing the inputs and in processing and generating the

outputs. These are generally listed as “shall” statements starting with "The system shall…

These include:

 Validity checks on the inputs

 Exact sequence of operations

 Responses to abnormal situation, including

 Overflow

 Communication facilities

 Error handling and recovery

14

 Effect of parameters

 Relationship of outputs to inputs, including

 Input/Output sequences

 Formulas for input to output conversion

It may be appropriate to partition the functional requirements into sub-functions or sub-

processes. This does not imply that the software design will also be partitioned that way.

3.8.2 Performance Requirements

This subsection specifies both the static and the dynamic numerical requirements placed on

the software or on human interaction with the software, as a whole. Static numerical

requirements may include:

 (a) The number of terminals to be supported

 (b) The number of simultaneous users to be supported

 (c) Amount and type of information to be handled

Static numerical requirements are sometimes identified under a separate section entitled

capacity.

Dynamic numerical requirements may include, for example, the numbers of transactions

and tasks and the amount of data to be processed within certain time periods for both

normal and peak workload conditions.

All of these requirements should be stated in measurable terms.

For example,

95% of the transactions shall be processed in less than 1 second

 rather than,

An operator shall not have to wait for the transaction to complete.

(Note: Numerical limits applied to one specific function are normally specified as part of

the processing subparagraph description of that function.)

3.8.3 Logical Database Requirements

This section specifies the logical requirements for any information that is to be placed into

a database. This may include:

 Types of information used by various functions

 Frequency of use

15

 Accessing capabilities

 Data entities and their relationships

 Integrity constraints

 Data retention requirements

If the customer provided you with data models, those can be presented here. ER diagrams

(or static class diagrams) can be useful here to show complex data relationships.

Remember a diagram is worth a thousand words of confusing text.

3.8.4 Design Constraints

Specify design constraints that can be imposed by other standards, hardware limitations,

etc.

3.8.4.1 Standards Compliance

Specify the requirements derived from existing standards or regulations. They might

include:

(1) Report format

(2) Data naming

(3) Accounting procedures

(4) Audit Tracing

For example, this could specify the requirement for software to trace processing activity.

Such traces are needed for some applications to meet minimum regulatory or financial

standards. An audit trace requirement may, for example, state that all changes to a payroll

database must be recorded in a trace file with before and after values.

3.8.5 Software System Attributes

There are a number of attributes of software that can serve as requirements. It is important

that required attributes by specified so that their achievement can be objectively verified.

The following items provide a partial list of examples. These are also known as non-

functional requirements or quality attributes.

These are characteristics the system must possess, but that pervade (or cross-cut) the

design. These requirements have to be testable just like the functional requirements. Its

easy to start philosophizing here, but keep it specific.

16

3.8.5.1 Reliability

Specify the factors required to establish the required reliability of the software system at

time of delivery. If you have MTBF requirements, express them here. This doesn’t refer

to just having a program that does not crash. This has a specific engineering meaning.

3.8.5.2 Availability

Specify the factors required to guarantee a defined availability level for the entire system

such as checkpoint, recovery, and restart. This is somewhat related to reliability. Some

systems run only infrequently on-demand (like MS Word). Some systems have to run 24/7

(like an e-commerce web site). The required availability will greatly impact the design.

What are the requirements for system recovery from a failure? “The system shall allow

users to restart the application after failure with the loss of at most 12 characters of input”.

3.8.5.3 Security

Specify the factors that would protect the software from accidental or malicious access,

use, modification, destruction, or disclosure. Specific requirements in this area could

include the need to:

 Utilize certain cryptographic techniques

 Keep specific log or history data sets

 Assign certain functions to different modules

 Restrict communications between some areas of the program

 Check data integrity for critical variables

3.8.5.4 Maintainability

Specify attributes of software that relate to the ease of maintenance of the software itself.

There may be some requirement for certain modularity, interfaces, complexity, etc.

Requirements should not be placed here just because they are thought to be good design

practices. If someone else will maintain the system

3.8.5.5 Portability

Specify attributes of software that relate to the ease of porting the software to other host

machines and/or operating systems. This may include:

 Percentage of components with host-dependent code

17

 Percentage of code that is host dependent

 Use of a proven portable language

 Use of a particular compiler or language subset

 Use of a particular operating system

Once the relevant characteristics are selected, a subsection should be written for each,

explaining the rationale for including this characteristic and how it will be tested and

measured.

Definitions of the quality characteristics not defined in the paragraphs above follow.

 Correctness - extent to which program satisfies specifications, fulfills

user’s mission objectives

 Efficiency - amount of computing resources and code required to

perform function

 Flexibility - effort needed to modify operational program

 Interoperability - effort needed to couple one system with another

 Reliability - extent to which program performs with required precision

 Reusability - extent to which it can be reused in another application

 Testability - effort needed to test to ensure performs as intended

 Usability - effort required to learn, operate, prepare input, and interpret

output

THE FOLLOWING section talks about how to organize requirements you write in section

3.8.2. At the end of this template there are a bunch of alternative organizations for section

3.8.2. Choose the ONE best for the system you are writing the requirements for.

3.8.6 Organizing the Specific Requirements

For anything but trivial systems the detailed requirements tend to be extensive. For this

reason, it is recommended that careful consideration be given to organizing these in a

manner optimal for understanding. There is no one optimal organization for all systems.

Different classes of systems lend themselves to different organizations of requirements in

section 3.8. Some of these organizations are described in the following subclasses.

18

3.8.6.1 System Mode

Some systems behave quite differently depending on the mode of operation. When

organizing by mode there are two possible outlines. The choice depends on whether

interfaces and performance are dependent on mode.

3.8.6.2 User Class

Some systems provide different sets of functions to different classes of users.

3.8.6.3 Objects

Objects are real-world entities that have a counterpart within the system. Associated with

each object is a set of attributes and functions. These functions are also called services,

methods, or processes. Note that sets of objects may share attributes and services. These

are grouped together as classes.

3.8.6.4 Feature

A feature is an externally desired service by the system that may require a sequence of

inputs to effect the desired result. Each feature is generally described in as sequence eof

stimulus-response pairs.

3.8.6.5 Stimulus

Some systems can be best organized by describing their functions in terms of stimuli.

3.8.6.6 Response

Some systems can be best organized by describing their functions in support of the

generation of a response.

3.8.6.7 Functional Hierarchy

When none of he above organizational schemes prove helpful, the overall functionality can

be organized into a hierarchy of functions organized by either common inputs, common

outputs, or common internal data access. Data flow diagrams and data dictionaries can be

use dot show the relationships between and among the functions and data.

19

4. SYSTEM DESIGN SPECIFICATION

4.1 Introduction

This chapter describes the system requirements, operating environment, system and

subsystem architecture, files and database design, input formats, output layouts, human-

machine interfaces, detailed design, processing logic, and external interfaces.

Mockup is the sample modeling file for any of the content. This example can change the

content of modeling files, the model can be used in different ways again and again without

losing the different types can occur. The most common use of mockups in software

development is to create user interfaces that show the end user what the software will look

like without having to build the software or the underlying functionality. A software

mockup will thus look like the real thing, but will not do useful work beyond what the user

sees.

Figure 4.1. Mockup sample

4.2 SYSTEM ARCHITECTURE

In this section, describe the system and/or subsystem(s) architecture for the project.

References to external entities should be minimal, as they will be described in detail in

Section 4.5, External Interfaces.

4.2.1 System Software Architecture

In this section, describe the overall system software and organization. Include a list of

20

software modules (this could include functions, subroutines, or classes), computer

languages, and programming computer-aided software engineering tools (with a brief

description of the function of each item). Use structured organization diagrams/object-

oriented diagrams that show the various segmentation levels down to the lowest level. All

features on the diagrams should have reference numbers and names. Include a narrative

that expands on and enhances the understanding of the functional breakdown. If

appropriate, use subsections to address each module.

Note: The diagrams should map to the FRD data flow diagrams, providing the physical

process and data flow related to the FRD logical process and data flow.

4.3 DATABASE DESIGN

Interact with the Database Administrator (DBA) when preparing this section. The section

should reveal the final design of all database management system (DBMS) files.

Additional information may add as required for the particular project. Provide a

comprehensive data dictionary showing data element name, type, length, source, validation

rules, maintenance (create, read, update, delete (CRUD) capability), data stores, outputs,

aliases, and description. ER diagrams are commonly used in conjunction with a data flow

diagram to display the contents of a data store. It helps to visualize how data is connected

in a general way, and are particularly useful for constructing a relational database. This

part should also reveal the ER diagram of the project’s database. Can be included as an

appendix.

21

Figure 4.2. ER Diagram sample

4.4 HUMAN-MACHINE INTERFACE

This section provides the detailed design of the system and subsystem inputs and outputs

relative to the user/operator. Any additional information may be added to this section and

may be organized according to whatever structure best presents the operator input and

output designs. Depending on the particular nature of the project, it may be appropriate to

repeat these sections at both the subsystem and design module levels. Additional

information may be added to the subsections if the suggested lists are inadequate to

describe the project inputs and outputs.

Use case diagrams are usually referred to as behavior diagrams used to describe a set of

actions (use cases) that some system or systems (subject) should or can perform in

collaboration with one or more external users of the system (actors). Each use case should

provide some observable and valuable result to the actors or other stakeholders of the

system.

22

Use case diagrams are used to specify:

 (external) Requirements, required usages of a system under design or analysis (subject)

- to capture what the system is supposed to do;

 The functionality offered by a subject – what the system can do;

 Requirements the specified subject poses on its environment - by defining how

environment should interact with the subject so that it will be able to perform its

services.

Figure 4.3. Use Case Diagram sample

4.4.1 Inputs

This section is a description of the input media used by the operator for providing

information to the system; show a mapping to the high-level data flows described in

chapter 1, System Overview. For example, data entry screens, optical character readers,

bar scanners, etc. If appropriate, the input record types, file structures, and database

structures provided in Section 4.3, File and Database Design, may be referenced. Include

data element definitions, or refer to the data dictionary.

Provide the layout of all input data screens or graphical user interfaces (GUTs) (for

example, windows). Provide a graphic representation of each interface. Define all data

23

elements associated with each screen or GUI, or reference the data dictionary.

This section should contain edit criteria for the data elements, including specific values,

range of values, mandatory/optional, alphanumeric values, and length. Also address data

entry controls to prevent edit bypassing.

Discuss the miscellaneous messages associated with operator inputs, including the

following:

 Copies of form(s) if the input data are keyed or scanned for data entry from

printed forms

 Description of any access restrictions or security considerations

 Each transaction name, code, and definition, if the system is a transaction-based

processing system

4.4.2 Outputs

This section describes of the system output design relative to the user/operator; show a

mapping to the high-level data flows described in the first chapter. System outputs include

reports, data display screens and GUIs, query results, etc. The output files are described in

Section 4.3 and may be referenced in this section. The following should be provided, if

appropriate:

 Identification of codes and names for reports and data display screens

 Description of report and screen contents (provide a graphic representation of

each layout and define all data elements associated with the layout or reference

the data dictionary)

 Description of the purpose of the output, including identification of the primary

users

 Report distribution requirements, if any (include frequency for periodic reports)

 Description of any access restrictions or security considerations

4.5 DETAILED DESIGN

This section provides the information needed for a system development team to actually

build and integrate the hardware components, code and integrate the software modules, and

interconnect the hardware and software segments into a functional product. Additionally,

this section addresses the detailed procedures for combining separate COTS packages into

a single system.

24

4.5.1 Software Detailed Design

A software module is the lowest level of design granularity in the system. Depending on

the software development approach, there may be one or more modules per system. This

section should provide enough detailed information about logic and data necessary to

completely write source code for all modules in the system (and/or integrate COTS

software programs).

If there are many modules or if the module documentation is extensive, place it in an

appendix or reference a separate document. Add additional diagrams and information, if

necessary, to describe each module, its functionality, and its hierarchy. Industry-standard

module specification practices should be followed. Include the following information in

the detailed module designs:

 A narrative description of each module, its function(s), the conditions under

which it is used (called or scheduled for execution), its overall processing,

logic, interfaces to other modules, interfaces to external systems, security

requirements, etc.; explain any algorithms used by the module in detail

 For COTS packages, specify any call routines or bridging programs to integrate

the package with the system and/or other COTS packages (for example,

Dynamic Link Libraries)

 Data elements, record structures, and file structures associated with module

input and output

 Graphical representation of the module processing, logic, flow of control, and

algorithms, using an accepted diagramming approach (for example, structure

charts, action diagrams, flowcharts, etc.)

 Data entry and data output graphics; define or reference associated data

elements; if the project is large and complex or if the detailed module designs

will be incorporated into a separate document, then it may be appropriate to

repeat the screen information in this section

 Report layout

25

5. IMPLEMENTATION

At the implementation phase, the students begin to implement the project, showing

end-to-end functionality. At the end of this phase, the following objectives must be

reached:

 The implementation should show explicitly prove the developed model is

operational and functional;

 All the proposed features or objectives must be implemented;

 The implementation must be robust;

This part must include the screenshot of the project with brief information. The

important parts of the code may be mentioned. The codes must be at appendix.

26

6. RESULT & CONCLUSION

In the results area of the student’s project, the student explains what happened

during the process of development of the project. The student should include what s/he

thought might happen and what s/he wanted to prove, as well as what actually happened.

The student may use as much data as s/he can from investigations and document founded

with charts or graphs whenever possible. The results section of the project should clearly

explain to viewers what is learned during project and how that lined up with the project.

The test result, outputs are must be included in this part.

The conclusion is where the student summarizes everything learned from the

experiment and compare it to what is expected would happen. Start the conclusion by

listing project and what that project was based on. Explain whether the results held up the

project or disproved it, and then extrapolate on these founded to form an idea of where

could take the project in the future. The student can mention changes can be made if s/he

was to try your project again.

27

REFERENCES

28

APPENDIX A

Your appendix goes here if any available.

29

APPENDIX B

Your appendix goes here if any available.

